Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Curr Med Chem ; 2022 Sep 06.
Article in English | MEDLINE | ID: covidwho-2233617

ABSTRACT

Given the importance of COVID-19-induced ARDS, recently, researchers have strived to determine underlying mechanisms involved in the inflammatory responses. In this regard, inflammasomes possess a distinct priority for cytokine storm occurrence and subsequently ARDS progression in ill patients with SARS-CoV-2 infection. In this mini-review, the characteristics of known inflammasome inhibitors and designed research in this field were concretely deciphered.

2.
Pharmacol Rep ; 72(6): 1446-1478, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-2060162

ABSTRACT

The viral infection due to the new coronavirus or coronavirus disease 2019 (COVID-19), which was reported for the first time in December 2019, was named by the World Health Organization (WHO) as Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV2), because of the very similar genome and also its related symptoms to SARS-CoV1. The ongoing COVID-19 pandemic with significant mortality, morbidity, and socioeconomic impact is considered by the WHO as a global public health emergency. Since there is no specific treatment available for SARS-CoV2 infection, and or COVID-19, several clinical and sub-clinical studies are currently undertaken to find a gold-standard therapeutic regimen with high efficacy and low side effect. Based on the published scientific evidence published to date, we summarized herein the effects of different potential therapies and up-to-date clinical trials. The review is intended to help readers aware of potentially effective COVID-19 treatment and provide useful references for future studies.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2/isolation & purification , Animals , COVID-19/virology , Clinical Trials as Topic , Humans
3.
J Intensive Care ; 10(1): 38, 2022 Jul 30.
Article in English | MEDLINE | ID: covidwho-1968766

ABSTRACT

BACKGROUND: In late 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which is responsible for coronavirus disease (COVID-19), was identified as the new pathogen to lead pneumonia in Wuhan, China, which has spread all over the world and developed into a pandemic. Despite the over 1 year of pandemic, due to the lack of an effective treatment plan, the morbidity and mortality of COVID-19 remains high. Efforts are underway to find the optimal management for this viral disease. MAIN BODY: SARS-CoV-2 could simultaneously affect multiple organs with variable degrees of severity, from mild to critical disease. Overproduction of pro-inflammatory mediators, exacerbated cellular and humoral immune responses, and coagulopathy such as Pulmonary Intravascular Coagulopathy (PIC) contributes to cell injuries. Considering the pathophysiology of the disease and multiple microthrombi developments in COVID-19, thrombolytic medications seem to play a role in the management of the disease. Beyond the anticoagulation, the exact role of thrombolytic medications in the management of patients with COVID-19-associated acute respiratory distress syndrome (ARDS) is not explicit. This review focuses on current progress in underlying mechanisms of COVID-19-associated pulmonary intravascular coagulopathy, the historical use of thrombolytic drugs in the management of ARDS, and pharmacotherapy considerations of thrombolytic therapy, their possible benefits, and pitfalls in COVID-19-associated ARDS. CONCLUSIONS: Inhaled or intravenous administration of thrombolytics appears to be a salvage therapy for severe ARDS associated with COVID-19 by prompt attenuation of lung injury. Considering the pathogenesis of COVID-19-related ARDS and mechanism of action of thrombolytic agents, thrombolytics appear attractive options in stable patients without contraindications.

4.
Comb Chem High Throughput Screen ; 25(11): 1805-1808, 2022.
Article in English | MEDLINE | ID: covidwho-1547091

ABSTRACT

Infection by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) provokes acute inflammation due to extensive replication of the virus in the epithelial cells of the upper and lower respiratory system. The mammalian target of rapamycin (mTOR) is a l signalling protein with critical functions in cell growth, metabolism, and proliferation. It is known for its regulatory functions in protein synthesis and angiogenesis cascades. The structure of mTOR consists of two distinct complexes (mTORC1 and mTORC2) with diverse functions at different levels of the signalling pathway. By activating mRNA translation, the mTORC1 plays a key role in regulating protein synthesis and cellular growth. On the other hand, the functions of mTORC2 are mainly associated with cell proliferation and survival. By using an appropriate inhibitor at the right time, mTOR modulation could provide immunosuppressive opportunities as antirejection regimens in organ transplantation as well as in the treatment of autoimmune diseases and solid tumours. The mTOR also has an important role in the inflammatory process. Inhibitors of mTOR might indeed be promising agents in the treatment of viral infections. They have further been successfully used in patients with severe influenza A/H1N1 pneumonia and acute respiratory failure. The officially accepted mTOR inhibitors that have undergone clinical testing are sirolimus, everolimus, temsirolimus, and tacrolimus. Thus, further studies on mTOR inhibitors for SARS-CoV-2 infection or COVID-19 therapy are well merited.


Subject(s)
COVID-19 Drug Treatment , Influenza A Virus, H1N1 Subtype , Everolimus , Humans , Influenza A Virus, H1N1 Subtype/metabolism , MTOR Inhibitors , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , SARS-CoV-2 , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/genetics , Tacrolimus
5.
Int Immunopharmacol ; 101(Pt B): 108257, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1466420

ABSTRACT

Recently, the medications used for the severe form of the coronavirus disease-19 (COVID-19) therapy are of particular interest. In this sense, it has been supposed that anti-VEGF compounds would be good candidates in the face of "cytokine storm" and intussuscepted angiogenesis due to having an appreciable anti-inflammatory effect. Therefore, they can be subjected to therapeutic protocols to manage acute respiratory distress syndrome (ARDS). Since the compelling evidence emphasized that VEGFs contribute to the inflammatory process and play a mainstay role in disease pathogenesis, in this review, we aimed to highlight the VEGF's plausible participation in the cytokine storm exacerbation in COVID-19. Next, the recent clinical advances regarding the anti-VEGF medications, including humanized monoclonal antibody, immunosuppressant, a tyrosine kinase inhibitor, and a cytokine inhibitor, have been addressed in the setting of COVID-19 treatment in critically ill patients. Together, retrieving the increased level of VEGF subsets, as well as antagonizing VEGF related receptors, could be helpful for the treatment of COVID-19, especially in those suffering from ARDS.


Subject(s)
Angiogenesis Inhibitors/therapeutic use , COVID-19 Drug Treatment , Vascular Endothelial Growth Factors/antagonists & inhibitors , COVID-19/immunology , Critical Illness , Humans , Receptors, Vascular Endothelial Growth Factor/immunology , Vascular Endothelial Growth Factors/immunology
6.
BMC Infect Dis ; 21(1): 297, 2021 Mar 24.
Article in English | MEDLINE | ID: covidwho-1150391

ABSTRACT

BACKGROUND: Levamisole has shown clinical benefits in the management of COVID-19 via its immunomodulatory effect. However, the exact role of Levamisole effect in clinical status of COVID-19 patients is unknown. We aimed to evaluate the efficacy of Levamisole on clinical status of patients with COVID-19 during their course of the disease. METHODS: This prospective, double-blind, randomized controlled clinical trial was performed in adult patients with mild to moderate COVID-19 (room-air oxygen saturation > 94%) from late April 2020 to mid-August 2020. Patients were randomly assigned to receive a 3-day course of Levamisole or placebo in combination with routine standard of care. RESULTS: With 25 patients in each arm, 50 patients with COVID-19 were enrolled in the study. Most of the study participants were men (60%). On days 3 and 14, patients in Levamisole group had significantly better cough status distribution when compared to the placebo group (P-value = 0.034 and 0.005, respectively). Moreover, there was significant differences between the two groups in dyspnea at follow-up intervals of 7 (P-value = 0.015) and 14 (P-value = 0.010) days after receiving the interventions. However, no significant difference in fever status was observed on days 1, 3, 7, and 14 in both groups (P-value > 0.05). CONCLUSION: The results of the current study suggest that Levamisole may improve most of clinical status of patients with COVID-19. The patients receiving Levamisole had significantly better chance of clinical status including cough and dyspnea on day 14 when compared to the placebo. However, the effect-size of this finding has uncertain clinical importance. TRIAL REGISTRATION: The trial was registered as IRCT20190810044500N7 (19/09/2020).


Subject(s)
COVID-19 Drug Treatment , Levamisole/therapeutic use , Adult , Double-Blind Method , Female , Humans , Male , Middle Aged , Prospective Studies , Time Factors , Treatment Outcome , Young Adult
7.
Arch Med Res ; 51(7): 631-635, 2020 10.
Article in English | MEDLINE | ID: covidwho-1023470

ABSTRACT

The novel coronavirus 2019-nCoV (SARS-CoV-2) infection that emerged in China in December 2019 has rapidly spread to become a global pandemic. This article summarizes the potential benefits of erythropoietin (EPO) in alleviating SARS-CoV-2 pathogenesis which is now called COVID-19. As with other coronavirus infection, the lethality of COVID-19 is associated with respiratory dysfunction due to overexpression of proinflammatory cytokines induced by the host immune responses. The resulting cytokine storm leads to the development of acute lung injury/acute respiratory distress syndrome (ALI/ARDS). Erythropoietin, well known for its role in the regulation of erythropoiesis, may have protective effects against ALI/ARDS induced by viral and other pathogens. EPO exerts antiapoptotic and cytoprotective properties under various pathological conditions. With a high safety profile, EPO promotes the production of endothelial progenitor cells and reduce inflammatory processes through inhibition of the nuclear factor-κB (NF-κB) and JAK-STAT3 signaling pathways. Thus, it may be considered as a safe drug candidate for COVID-19 patients if given at the early stage of the disease. The potential effects of erythropoietin on different aspects of ALI/ARDS associated with SARS-CoV-2 infection are reviewed.


Subject(s)
Acute Lung Injury , Anti-Inflammatory Agents/therapeutic use , COVID-19 Drug Treatment , COVID-19 , Erythropoietin/therapeutic use , Respiratory Distress Syndrome , Acute Lung Injury/drug therapy , Acute Lung Injury/virology , COVID-19/complications , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/virology , Humans , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/virology , SARS-CoV-2
8.
Eur J Pharmacol ; 887: 173530, 2020 Nov 15.
Article in English | MEDLINE | ID: covidwho-738842

ABSTRACT

The global impact of the new coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), infection that caused COVID-19 has been evident in the last few months from the unprecedented socioeconomic disruption to more than 600,000 deaths. The lack of vaccine and effective therapeutic agents for the disease prompted world-wide effort to test those antiviral therapeutics already in use for other diseases. Another interesting approach has been based on the pathological sequel of the disease that involve severe inflammatory reaction (or the cytokine storm) associated with pneumonia in critically ill patients. This article outlines the prophylaxis therapeutic potential of supplements vitamins and micronutrients in COVID-19. By ameliorating the inflammatory and oxidative stress associated with the disease and some direct antiviral effects, the application of these agents as adjuvants and other alternative approaches are discussed. Available clinical trials including those currently registered on these supplements are scrutinized.


Subject(s)
Coronavirus Infections/therapy , Dietary Supplements , Pneumonia, Viral/therapy , Animals , Antioxidants/therapeutic use , COVID-19 , Coronavirus Infections/prevention & control , Humans , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Vitamins/therapeutic use
9.
J Clin Pharm Ther ; 45(6): 1515-1519, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-733228

ABSTRACT

WHAT IS KNOWN AND OBJECTIVE: This article summarizes the effects of sivelestat on acute lung injury/acute respiratory distress syndrome (ALI/ARDS) or ARDS with coagulopathy, both of which are frequently seen in patients with COVID-19. COMMENT: COVID-19 patients are more susceptible to thromboembolic events, including disseminated intravascular coagulation (DIC). Various studies have emphasized the role of neutrophil elastase (NE) in the development of DIC in patients with ARDS and sepsis. It has been shown that NE inhibition by sivelestat mitigates ALI through amelioration of injuries in alveolar epithelium and vascular endothelium, as well as reversing the neutrophil-mediated increased vascular permeability. WHAT IS NEW AND CONCLUSIONS: Sivelestat, a selective NE inhibitor, has not been evaluated for its possible therapeutic effects against SARS-CoV-2 infection. Based on its promising beneficial effects in underlying complications of COVID-19, sivelestat could be considered as a promising modality for better management of COVID-19-induced ALI/ARDS or coagulopathy.


Subject(s)
Acute Lung Injury/drug therapy , COVID-19 Drug Treatment , Disseminated Intravascular Coagulation/drug therapy , Glycine/analogs & derivatives , Proteinase Inhibitory Proteins, Secretory/therapeutic use , Respiratory Distress Syndrome/drug therapy , Sulfonamides/therapeutic use , Acute Lung Injury/etiology , COVID-19/complications , Disseminated Intravascular Coagulation/etiology , Glycine/therapeutic use , Humans , Respiratory Distress Syndrome/etiology , Treatment Outcome
10.
Biochimie ; 177: 50-52, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-713261

ABSTRACT

Various interferon (IFN)-inducible transmembrane (IFITM) proteins are known to be expressed in human tissues though only IFITM 1-3 are inducible by IFN. Numerous studies have shown that activation of IFITM3 could suppress infection by influenza and coronaviruses such as the Middle East Respiratory Syndrome Coronavirus (MERS-CoV). In view of the potential application of IFITM proteins' induction to target SARS-CoV-2 infection that causes COVID-19, this article layout insights into the known antiviral mechanisms and therapeutic agents related to IFITM. Blocking viral entry through various mechanisms and the potential application of the FDA approved immunosuppressant agent, mycophenolic acid, as inducer of IFITM3 are among those discussed.


Subject(s)
Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Interferons/pharmacology , Membrane Proteins/drug effects , Mycophenolic Acid/pharmacology , Pneumonia, Viral/drug therapy , RNA-Binding Proteins/drug effects , Animals , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/metabolism , Humans , Immunosuppressive Agents/pharmacology , Membrane Proteins/immunology , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/metabolism , RNA-Binding Proteins/immunology , SARS-CoV-2 , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL